Fatigue Life Predictions of Metal Matrix Composites Using Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
Fatigue life predictions in polymer particle composites
This paper presents a study on fatigue life predictions in three polymer particle composites with different volume fractions of filler and different particle sizes. Central hole notched specimens were analysed using a fracture mechanics approach. A solution for the stress intensity factor of corner cracks at a hole was obtained using the finite element method and considering quarter-circular an...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Studying on the fatigue behavior of Al- Al2O3 metal matrix nano composites processed through powder metallurgy
Excellent mechanical properties and fatigue performance of Al/Al2O3 metal-based nanocomposites caused to introduce this material as a good candidate for various applications. In this regard, the preparation and characterization of this composite can be considered as a hot issue for research. The study was carried out in several steps including: (i) preparation of Al/Al2O3 metal-based nanocompos...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks
Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archives of Metallurgy and Materials
سال: 2014
ISSN: 1733-3490
DOI: 10.2478/amm-2014-0016